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A two-dimensional model of polymer chain folding invented by Zwanzig 
and Lauritzen is here studied using a grand ensemble and transfer matrix 
method. Due to the character of the model, there are no extensive parameters 
in the grand ensemble and the dispersion in system size is large, raising 
doubts about the validity and usefulness of the ensemble. We find it possible 
to define a thermodynamic limit such that it leads to near equivalence between 
the canonical and grand ensembles in the limit of large systems. The transfer 
matrix in this case is a nonlocal operator on a space of L~ functions, and the 
eigenvalue equation is a homogeneous Fredholm integral equation of the 
second kind which can be completely solved in terms of Bessel functions. 
The grand partition function can then be expressed as a sum of powers of 
the known eigenvalues. It is an easy matter to reproduce the second-order 
phase transition in the canonical ensemble found in the original work on the 
model. The investigation is extended to yield the probability densities describ- 
ing the length of a segment and the correlations among segments. The 
concept of a local width of the folded chain is found to break down at higher 
temperatures, while critical correlations are characterized by infinite range, 
as expected. Apart from physical and methodological implications, the 
new solution provides striking illustrations of some basic ideas concerning 
phase transitions. 

KEY W O R D S :  Polymer model; chain folding; phase transition; grand 
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1. I N T R O D U C T I O N  

We shall here be concerned with a mathematical model of a polymer molecule 
invented by Zwanzig and Lauritzen I1~ in an effort to understand the phenom- 
enon of polymer crystallization by chain folding. The polymer molecule is 
restricted to a plane. I t  is assumed capable of creating 180 ~ folds at a given 
cost in energy. The segments on either side of a particular fold attract each 
other in such a way that the energy gained is proportional to the length 
of the shorter of  the two segments. 

In two papers Zwanzig and Lauritzen 11,2~ considered this simple model, 
allowing the chain segments first a continuous range of lengths, then a discrete 
range, as is reasonable in view of the submolecular structure of  the polymer. 
Their work was in both cases based on the evaluation of the canonical 
partition function Q(L), which is just the sum of the Boltzmann factors 
e -~E~(L) for all configurations of  a polymer molecule of total length L. It  was 
shown that the model led to a second-order phase transition between an 
extended mode of infinite segment lengths below T~ and a folded mode of 
finite segment lengths above To. 

From a physical point of  view the transition can be said to result f rom 
the competition between configurational and energy contributions to the 
partition function. For low temperatures the Boltzmann factor varies rapidly 
with the energy Ej(L) and the configurations with very long segments 
minimizing the energy dominate the sum. As temperature increases, the 
importance of energy decreases, sheer number of  configurations become 
correspondingly more important,  and the average segment length decreases. 

The evaluation of the canonical partition function Q(L) is not a simple 
matter, but Zwanzig and Lauritzen were able to show that in the thermo- 
dynamic limit of infinite chain length the average number of folds per unit 
length vanished below a temperature T~ and was finite above it. They found 
that  a second-order phase transition took place at this temperature, the 
transition being characterized by an inverse-square-root singularity in the 
specific heat. This held true whether the segment length was taken to be a 
continuous or a discrete variable. The only qualitative difference between the 
two variations of  the model occurred when the fold energy was taken to be 
negative, but not too small. Then the continuous model was found to have 
two transitions. At high temperatures the chain would be in the folded mode, 
for an intermediate range it would be in an extended mode, but then at some 
low temperature the chain would again go into a folded mode. This is 
physically reasonable since for the case of  negative fold energy increasing 
the number of folds in the chain may well minimize the total energy. The 
discrete model did not show this phenomenon, which appears then to be an 
unphysical consequence of the continuous range of segment lengths. (2) 
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Although the Zwanzig-Lauritzen (ZL) model of a polymer has 
interesting physical content, its application to the explanation of polymer 
crystallization may not be immediately obvious. The great merit of the 
model is that it allows exact analytical study of very interesting thermodyna- 
mic behavior. Thus it can be used as a proving ground for mathematical 
techniques and thermodynamic hypotheses which may be useful in the study 
of more realistic but mathematically less tractable systems. This is the 
motivation of the present work. The aim has been to seek a new analytical 
solution to the continuous ZL model which would simplify the calculations 
and extend the range of results obtainable by analytical means. In particular, 
the probability density for the length of a given segment in the chain molecule 
and the correlations among the segments are of interest. 

In this paper we introduce a symmetrized version of the original ZL 
model which eliminates the end effects in the molecule. A new solution will 
be obtained using a grand ensemble, which allows the total length of the 
molecules to vary, and the powerful transfer matrix method well known from 
work on the Ising model. (a~ The simplifications obtained in a grand ensemble 
of this sort have been discussed by Lifson and Zimm lal in the context of the 
helix-coil transition in biopolymers. But unlike the grand canonical ensemble 
familiar from the statistical mechanics of fluids, the grand ensemble lacks 
an extensive parameter corresponding to the volume of the system and the 
dispersion in the length of the molecules remains large in the thermodynamic 
limit. This means that the canonical and grand ensembles are not equivalent 
for large systems by the traditional arguments and as a result little use has 
been made of the latter ensemble. Here we reexamine the validity of the grand 
ensemble and find formal justification for the more extensive use we propose 
to make of it. 

The transfer matrix formulation that we employ below is different from 
well-known previous applications in that the states available to each site in 
the linear lattice are not discrete but form a continuum, and consequently 
the eigenvalue equation is a homogeneous Fredholm integral equation of the 
second kind. Fortunately, this equation can be completely solved and we find 
the eigenvalues related to the positive zeros of ttessel functions, and the 
eigenfunctions are obtained in terms of the Bessel functions themselves. 

Using these results, it becomes a simple matter to find an expression for 
the free energy density and reproduce the results of Zwanzig and Lauritzen 
concerning the phase transition. We point out, however, that the free energy 
density in the thermodynamic limit does not contain information about a 
large class of properties, including the probability density for the length of a 
segment, correlations among segments, and end effects in the molecule. These 
properties can be studied with our new methods. We choose to present a 
derivation of the probability density for one segment and for two or more 
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segments separated by given numbers of folds. The concept of local crystal 
thickness is discussed and the range of critical correlations is found to be 
infinite. Further calculations have been carried out concerning end effects 
and other properties but we shall only state the more interesting results in the 
concluding discussion. 

Section 2 presents the model in detail and the basic statistical mechanics 
used. In Section 3 we introduce the transfer matrix and solve for the eigen- 
values and eigenfunctions. The form of the phase transition is obtained in 
Section 4 and in Section 5 we extend the investigation to segment length 
probability densities. We conclude with a discussion of the model on the 
basis of results obtained. 

2. M O D E L  A N D  E N S E M B L E  

2.1. The  Mode l  

Consider the case of a single, long polymer molecule confined to a plane. 
The ZL model is a specification of the configurations available to this two- 
dimensional molecule and the energy associated with each such configuration. 
In order to simplify the phenomenon of chain folding, the molecule is 
assumed capable of creating 180 ~ folds in the forward direction only. The 
folds are of a uniform character occupying a length q of the molecule. The 
part of the molecule located between two folds is called a segment of the chain. 
It can have any length in the interval from zero to infinity (see Fig. 1). 

The total energy of any configuration is given by associating an energy u 
with each fold and an interation energy - - J  min(x~, x~+a) with any pair of 
neighboring segments of length x~ and x~+l. Here rain(x, y) stands for the 
smaller of the two numbers x and y. The idea behind this choice of energy 
is that the segments interact with short-ranged van der Waals forces. The 

q 

l 
Fig. 1. Configuration of a polymer 

chain in the ZL model. 
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constant J will be taken to be positive, so that the forces between segments 
will be attractive. The fold energy will not be limited to positive values but, 
as mentioned above, the results for negative u may be of less physical interest. 

Thus we can specify the configuration of the molecule by a sequence 
xz,  x2, xa ,..., x~v and the corresponding total energy is 

N--1 
E(x ,  .... , XN) = ( N  - -  1 ) u  - -  J ~ min(&, xi+l) (1) 

i=1 

N 
L== ( N - -  l )q -k  ~ & (2) 

i=1 

From Fig. 1 and the total energy (1) it is clear that the end segments and 
the internal segments are fundamentally different. The internal segments 
appear in two nearest-neighbor pairs, while the end segments appear in only 
one such pair. This asymmetry in the model is physically well founded, but 
for mathematical reasons we shall here introduce a symmetrized version of 
the model. We simply let the two end segments form a nearest-neighbor pair 
with a fold in between. Then the total energy and length of the molecule 
become 

[N-li~l ] E~(x~ ..... xN) = Nu --  J ~ min(xi,  xi§ 4- min(xN, x0  (3) 
t_ 

N 
L,  = Nu + ~ xi (4) 

i=1 

The symmetrized model has no simple relation to the type of chain 
molecule considered here. It does not result merely by bending the formerly 
considered configurations into a closed ring. Neither will the physical proper- 
ties of the two models necessarily be the same. There may be circumstances 
such that the symmetrized model would be physically justifiable, but at this 
point the interaction between end segments is just an artifice introduced for 
mathematical purposes. We shall return in the concluding discussion to 
consider the differences between the two models, but the following presenta- 
tion will be in terms of  the somewhat simpler symmetrized model. 

It should be clear that the relevance of the ZL model to the behavior of a 
real polymer is entirely hypothetical and intuitive. The model disregards the 
microscopic details of a real polymer. The velocities of various parts of the 
molecule are neglected and the spatial coordinates giving rise to the various 
configurations are treated in a coarse way. Thus the physical validity of the 
model must be determined by comparison of its predictions with the results 
of experiments. 
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2.2. The  Canonical  Ensemble  

The canonical ensemble is characterized by the fact that the size of the 
system as well as any external parameters are fixed while the number of 
molecules in the available states is proportional to a weighting factor 

W~(r = e -~E(~) (S) 

Here E(s c) is the total energy in a state indexed by s e and/3 -1 is equal to k~T, 
the Boltzmann constant multiplied by the temperature. The canonical 
partition function is defined by 

Q(S) = ~ e -oe(e~ (6) 
~ e S  

where S denotes the set of all states satisfying the restrictions on the size 
and external parameters of the system. 

Zwanzig and Lauritzen used the canonical ensemble and started their 
work from the following form for the partition function of the original 
model: 

) Q ( L ) =  ~ fo dxl"" ~o dXN~ xi-r (N--1)q--  L) 
N = I  " i = l  

• exp fiJ ~ min(xi,  xi+O -- ( N -  1)/3u (7) 
1 = 1  

We note that the summation over available states ~: in (6) has been replaced 
by a summation over the number of segments N, integrations over all 
segment lengths, and a g-function which picks out only those configurations 
having a fixed total length L. As it stands, (7) may be confusing since it 
appears as if Q(L) is not dimensionless, as it should be and clearly is in (6). 
However, we note that the present model in which the states form a contin- 
uous set should be viewed as some limiting form of a discrete model. Thus the 
integration over segment length arises from a sum over discrete lengths 

~ clx~ w(x~) (81 

Here w(xi) is a density of states factor. In (7) it has been implicitly assumed 
that w(xi) is equal to unity, but it still carries the dimension inverse length, 
so that Q(L) is in fact dimensionless. 

It is generally assumed that a phase transition, as defined in terms of 
discontinuities or singularities in thermodynamic variables, will only occur 
in the limit of an infinitely large system, the thermodynamic limit. For  the 
present model and the canonical ensemble the thermodynamic limit is 
obtained simply by letting L approach infinity. 



Zwanzig-Lauritzen Model ot Polymer Chain Folding 241 

2.3. The Grand Ensemble 

The restriction to configurations of fixed total length complicates the 
evaluation of the canonical partition function Q(L). Thus we shall want to use 
a generalized ensemble in which external parameters are fixed but the size of 
the system is allowed to vary. The number of molecules in a state ~: is given 
by the weighting factor 

Wc(~:) = e -~ele)-~mlel (9) 

where M(~:) is directly proportional to the size of the system. Usually M(~) is 
taken to be the number of particles in the system, but in our continuous 
polymer model the total length L measures the size of the system. Summing 
over the available states, one obtains the grand partition function 

Z(o 0 = ~ e -~E(e)-~M(~) (10) 
S 

Here the set of available states S includes the full range of system sizes, but 
any external parameter remains fixed. 

The grand partition function for the symmetrized ZL model becomes 

fo fj Z(~) = [exp --  N(flu -+- ~q)] dxl "'" dxu  
N = I  

• exp fiJ m i n ( x i , x i + 0 + m i n ( x u , x 0  - - ~ x i  (11) 
i = 1  ] 

Comparing (11) to Q(L) in (7), we see that the 8-function has been replaced 
by an exponential, exp[--aL(xl  .... , XN)]. Thus the two functions are related 
as follows: 

f0 z ( ~ )  = ~z; Q(L) e - ~  (12) 

For a large class of systems the relation (12) or its analog leads to the 
equivalence of the canonical and grand ensembles for large systems. The 
reason is that Q(L)e -~L is sharply peaked at some value L(~), so that the 
dispersion in system size is small and one gets 

Z(~) ~ Q(L(oO)e -~L(~) (13) 

This approximation will usually become increasingly accurate as L(~) 
becomes larger. 

In the present case we shall not assume the equivalence of the canonical and 
grand ensemble. It should be noted that our model differs from a more typical 
system in that there is no spatial limitation to take the place of volume. Thus 
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the total length L is the only extensive parameter in the canonical ensemble, 
and the grand ensemble is entirely without extensive variables. Such ensembles 
Jacking extensive parameters are often called generalized ensembles. (5) A 
grand ensemble similar to the one we shall use has recently been discussed by 
Lifson and Zimm (~) in the context of  the helix-coil transition in biopolymers. 
The dispersion in system size is known to remain significant even for large 
systems, and the grand and canonical ensembles are not equivalent in the 
usual sense. In view of this we shall not rely in what follows upon any 
assumption of a pr ior i  validity of the grand ensemble. Instead we shall base 
our discussion on the commonly accepted canonical ensemble and carefully 
prove that a large class of properties will in fact be the same in the two 
ensembles in the thermodynamic limit. 

The question arises as to how the thermodynamic limit should be 
defined in the grand ensemble in the absence of any extensive parameters. 
Noting that cr is the parameter  conjugate to the total length, 

( L )~ - -  - -  Z-l(oO(O/~oOZ(a) (14) 

we suggest the definition 

lim where lim (L)~ = c~ and (L)~ < oo for o~ > % 
~ o +  ~0+  (15) 

It can be seen directly from (12) that Z(~) is a monotone decreasing function 
of oq as is (L)~.  I f  Z(~) is not discontinuous, the thermodynamic limit can 
then be equivalently defined by 

lira lim Z ( ~ )  = o% Z ( ~ )  < oo for ~ > % (16) 
~ a O  + ~ ~ _ ~ 0 +  

Since we have 
L 0 

f d L Q ( L )  e -~L < o% Lo < ~ ,  allc~ (17) 
" 0  

s o is the largest ~ such that the infinitely long molecules play a dominant role 
in the ensemble. 

3. T H E  T R A N S F E R  M A T R I X  M E T H O D  

3.1. The  M e t h o d  

Statistical mechanics provides a simple procedure for the theoretical 
investigation of a system in equilibrium. First one choose the proper statistical 
ensemble to describe the conditions under which the system is studied. Then 
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the corresponding partition function is written down as a sum of weighting 
factors for all states of the system. The properties sought can usually be 
expressed in terms of the partition function and its derivative with respect to 
some parameters of the problem. Thus the third step is to find a form for the 
partition function simple enough so that these expressions for the properties 
can be evaluated. This is the difficult part of the procedure, and in the 
presence of nontrivial interactions among the constituents of the system 
exact analytical methods will only rarely suffice to produce the desired 
information. 

Leaving aside for the moment the question of equivalence, we shall here 
replace the traditional canonical ensemble by the grand ensemble introduced 
above, in the hopes of finding the mathematical procedure thereby simplified. 
T]hus we turn now to consider the grand partition function for our polymer 
model. The evaluation of Z as defined in (11) appears to be easier by virtue 
of  the lack of the 3-function representing the length restriction in the canonical 
partition function, but it still remains a nontrivial task. We shall therefore 
attempt to generalize the transfer matrix method, well known from 
much work on the lsing model, (3) so that it may apply to the present 
problem also. 

Let the polymer molecule form a linear lattice with a segment at each 
site. The possible lengths of the segment then define the set of  states available 
to each site. Since we are dealing with a continuum of states, we shall use 
Dirac's notation, familiar from quantum mechanics. Thus we let I x} denote 
the state corresponding to segment length x, and we assume the usual 
orthonormality to hold, 

{xfy) = a (x  - ),) (18) 

It is then not difficult to verify that the partition function Z can be written as 

;o f0 Z = e -N(Bu+aq) d x 1  "'" dXN (xl  ! M[  x2} 
N=I 

• (x2 ! M] x3} "" {xN ! M[ xl} 

= ~. e -N(eu+c'q) (o~ dXl (Xl  [ M N [  Xl ;  
N=I "0 

~- ~ e N(BU-]-c~q) Tr( M N) 
N = I  

(19) 

Here M is an operator defined by the matrix element 

(x  I m i Y) = exp[fiJ min(x, y) -- l~(x + y)] (20) 



244 K. Sture J. Nordholm 

It operates on the space of states [ r  spanned by the set {[ x)}, 0 < x < 0% 

oo 
I r = ~0 dx r Ix) (21) 

f? M I r = dx r  x)  = dx r [ x)  (22) 

Taking the component of (22) in the [y) direction we find that 

r  --~ dx ( y  [ M I x)  r (23) 

Thus M also defines a nonlocal operator on the space of real functions on the 
interval zero to infinity. In fact, it follows from (20) and the relation 

f f d x d y ( y [ M l x ) 2 ~ d x d y e  2~smin(~,~)-~(~+y) 
o o 

= 1/o~(~ -- fiJ), o~ > fiJ (24) 

that for c~ > fiJ, (y  ] M I x)  is an L2 kernel and M as defined by (23) is a 
symmetric operator on the space of real L 2 functions L2[0, oo]. 

Symmetric L~ operators of this kind have been investigated in connection 
with the theory of integral equations and we draw upon the text by Tricomi (6) 
for the following results. 

1. M possesses real eigenvalues {Ai} and corresponding orthonormal 
eigenfunctions {r which may be obtained from the eigenvalue equation 

ar  = dx ( y  I M [ x )  r (25) 

2. The trace of M :v, N = 2, 3,..., is related to the eigenvalues in the 
usual way, 

f0 Tr(M N) = dx <x ] M N [ x )  ~- 2 ~iN (26) 
i 

where the sum extends over all nonzero eigenvalues with their full degeneracy. 

3. We have 

f clx dy <y [ MN [ x)  r r = ~ c['ai N (27) 
o 

where 

fO ~ 
o, = ax r r (28) 
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These results can be obtained with the use of the Hilbert-Schmidt 
theorem. Furthermore, we shall, after finding the eigenvalues, explicitly verify 
that (26) holds for N ~ 1 also. 

It follows directly from (26) that 

where 

Z -  ~ e-N'~+~q)~AiN= ~ ~(Ai') g 
N = I  i N = I  i 

(29) 

Ai' ~ Ale - (~+~q)  (30) 

For finite systems Z is finite and all the Ai' must be smaller than unity in 
magnitude. We can then interchange the summations in (30), perform the 
summation over N, and obtain 

z = Z a / / (1  - ai ' )  (31) 
i 

Thus we see that the grand partition function of the symmetrized ZL 
model is directly related to the eigenvalues of the operator M describing 
the interaction between neighboring segments in the polymer chain. We shall 
want to base our calculation of the properties of the ZL model on the spectral 
form (31) for the grand partition function. However, we note that this relation 
has been found for ~ larger than f i J  only. This limitation on the use of the 
transfer matrix method turns out to be of little consequence. The reason 
is that Z diverges for ~ < fiJ and all finite systems should therefore fall 
into the interval ~ ~> f iJ .  

Clearly the usefulness of the results obtained above rests on our ability 
to obtain the necessary spectral properties of M. This becomes our next task. 

3,2r. The Transfer Mat r ix  

Let us now proceed to calculate the eigenvalues and eigenfunctions of M 
by solving the integral equation 

jo Ar = d x  (exp[flJ rain(x, y) -- �89 + y)]} r (32) 

Using the relation 

rain(x, y) = �89 + y) -- �89 J x -- y l (33) 

and the definitions 

~ ~ -  f lJ ,  9" = �89 (34) 

822/9/3-4 
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we mult iply (32) by exp(�89 and obtain 

) t f ( y )  = f ~  d x  e-~lx-yEe- '~f(x)  (35) 

By differentiating this integral equat ion twice with respect to y using 

(a/~y)[ x - -  y~ = sign(y - -  x) (36) 

(a/ay) sign(y - -  x) = 2~(y - -  x) (37) 

we turn it into a differential equat ion 

(~ /ay2)  f ( y )  __ [~,2 _ (2~,/Z)e ,u] f ( y )  (38) 

In  order to get rid of  the exponential  funct ion in (38), we try a coordinate  
t rans format ion  to the new variable 

z = ae -'u/2 (39) 

Defining the new function g(z)  by 

g(z)  = f ( y )  (40) 

and differentiating bo th  sides twice with respect to z using (38) and (39), we 
obtain  

= 4 1  
- -  - ~  -Z- { g ( z )  - -  z -~z g ( z )  (41) 

At this po in t  we shall limit ourselves to the positive eigenvalues, IX > 0, 
and define the constant  a by 

a (87/A*/2) 1/z (42) 

Equat ion  (41) can now be rewritten in the fo rm of  the Bessel equat ion 

a ~ a (z" z 2 ~ g(z)  @ z -~z g ) ~- (z'a - -  v2) g(z)  : 0 (43) 

Here  the constant  v is defined by 

v = 2~,/~ 7 = igJ/(o~ --  f iJ)  (44) 

Recall ing our  restriction to c~ larger than  fiJ, we see tha t  v is positive and 
generally of  nonintegral  order. The  set of  solutions is then immediately 
known  and is summar ized  by 

g(z) = clJ~(z) + c2J_~(z) (45) 
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where f~  and J_~ are Bessel functions tabulated in standard references. The 
constants C~ and Cz are allowed to vary over the real axis to span the full set 
of real-valued solutions to Eq. (42). 

At this point we must note that in turning an integral equation into a 
differential equation, one generally expands the set of solutions. Thus we shall 
now insert the solutions 

f (y) = ClJ~(ae-,V /2) q- C~J_~(ae-~'J /2) (46) 

obtained from (45) into the original integral Eq. (35) in order to pick out the 
eigenfunctions we are looking for. We get 

)t(CzJ~(ae -~/2) + C2J_~(ae-'~/2)) 
~ 0"3 

= j dx e-~l~-'Jle-'~[Cl,,,C~(ae -~/2) + C2j_~(ae ~/2)] (47) 
0 

In terms of the variable z this identity can be written 

~;~a2~[Ci~(z) + C2Av(z)] = z v dy F + I [ C l s  + C2A. (y ) ]  

+ z -~ dyy~+l[G~(y )  + Cj_v(y)] 
(48) 

Here we have split up the integration range to avoid the absolute value 
operation. 

In performing the integrations of (48), we make use of  the following 
identities found in standard references [Ref. 7, formulas (11.3.20) and 
(11.3.21)]: 

fo ~ dt t~j,_z(t) = z%C~(z), Re > 0, (49) V 

.z  

j dt t-"J~+~(t) = [1/2"/'(v + 1)] -- z-%f~(z), Re v > 0 (50) 
0 

The integrated identity becomes 

l;~a'~[Cl~(Z) + C~J_,(z)] 

= C I [ Z o r ~ - I ( Z )  - -  z ~ a - " + l J ~ - 1 ( a )  + z ~ + z ( z ) ]  

+ C~ [z'a-'+lj_,,+~(a) - zJ_ ,+/z)  + 
Z-V 

2-~-1/-'( - v) 
zJ_~_~(z)] 

(51) 
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It  is clear that for v v~ 0 the identity above will require C~ to vanish 
due to the presence of the simple power z -~ on the right. Thus (51) becomes 

�89 = zJ~_ l ( z )  - -  z~a ~+l,r + z j v + l ( z )  (52) 

The coefficient multiplying z v on the right must also vanish. Since we require 
a to be nonzero, we then get 

J~- l ( a )  = 0 (53) 

Thus a must be one of the infinitely many positive zeros of the Bessel function 
J~-x �9 The remaining identity is 

�89 = z ff;~-z(z) -k z~ .+ l ( z )  (54) 

Recalling the definition of a, we can rewrite (54) in the form 

~u_l(Z) -~ c~v+l(Z) = (2b'/Z)~u(Z) (55) 

which is a well-known identity satisfied by the Bessel functions. 
We conclude that the eigenfunctions of  M corresponding to positive- 

definite eigenvalues can be summarized as 

~bi(y) = C~e-"~/2J~(aie -~y/2) (56) 

where a~ is one of the positive, definite-zeros of  ~-I(Y)-  The condition on 
a~ determines the corresponding eigenvalues and we get 

A~-~ 87 _ 4]3J 1 _ 4 v 2 (57) 
~}2ai2 (o~-/~j)2  ai 2 f l j  ai ~ 

Since the eigenvalues are all different, we know that the corresponding 
eigenfunctions are orthogonal, but we still have to determine the normaliza- 
tion constants C~ by the condition 

o ~ dx  [r ~ = 1 (58) 

Thus we have 

fo C~ 2 = dx  e-~[J~(aie-~l~ ' )]  2 (59) 

Transforming to the variable 

t = e-'~/2 (60) 

we get 
1 

C-~ 2 = ~ dt (2/7) t J .2 (a i t )  (61) 
Jo 
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This integration can be carried out directly [use (11.4.5) and (9.1.27) in the 
H a n d b o o k  o f  M a t h e m a t i c a l  Func t ions  7] and we find that 

C i = ~q l /2[~ , , (a i ) ] - i  (62) 

Thus we conclude that the normalized eigenfunction is 

~bi(y) = rl~/2[~,(ai)]-~ e- '~/2J~(a~e -',y/2) (63) 

At the outset we limited our calculations to the set of positive definite 
eigenvalues and corresponding eigenfunctions. Clearly only nonzero eigen- 
values have any relevance for Z, but we still need to prove that there are no 
negative eigenvalues. This can be done by explicitly verifying that (26) is 
satisfied for N = 1 and N = 2, where the sum is taken over the positive 
eigenvalues found above. 

By direct integration we easily find that 

f0 c~ Tr M = d x  e (es-~)~ = (~ - -  f i j ) - l ,  o~ > f i J  
(64) 

f:fo Tr M 2 = d x  d y e  2~smin(x,y)-~(x+y) = ~ - l ( a  - -  f i j ) - i  c~ > f i J  

(65) 

The corresponding sums of eigenvalues ~ and Ai 2 given by (61) are 

i 4v2 i 1 4v 2 
Ai ~- fi---j- ai 2 - -  f i j  $2,~-~ (66) i=1 i=1 

16v a ~ 1 16v ~ 
,~i2= (/~j)~ ai4 - -  (fij)2 S4,v-1 (67) 

i=i i=I 

Fortunately, the sums $2,v-i and $4,~-I of inverse powers of positive zeros of 

Bessel functions can be found in the literature. (s) They are 

$2,~-1 = 2-2v -1 (68) 

$4,~-1 - 2 - % - 2 ( v  -? 1) -1 (69) 

Substituting these values into (66) and (67), we find the expected agreement 
with (64) and (65). This concludes our evaluation of the grand partition 
function in terms of the eigenvalues of the operator M. 

4. T H E  P H A S E  T R A N S I T I O N  

In their original article Zwanzig and Lauritzen studied the properties 
of the polymer molecule in the thermodynamic limit based on an evaluation 
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of the quantity l i m z ~ L  -1 in Q(L), where Q(L) is the canonical partition 
function given in (7). We note that the Helmholtz free energy per unit length 
is 

f ( T ,  L) -= --(/3L) -1 In Q(/3, L) (70) 

and the energy and entropy per unit length as well as other thermodynamic 
properties can be obtained in terms of simple derivatives o f f ( T ,  L). 

Here we shall present a simple rederivation of the original analytical 
results using the transfer matrix method and a relation between canonical 
and grand partition functions pointed out by Lifson. (9) It follows easily 
from (12) that if Q(L) is finite for finite L and 

lira L -~ In Q(L) = yl  (71) 
L ~ m  

then the grand partition function Z(~) will be finite for ~ > 71 and infinite 
for ~ < y~. Thus we find that 

lim L -1 In Q(L) = ~0 (72) 

where % is defined by (16). 
We proceed to determine % as a function of temperature by examining 

the divergence of Z. Recall that for finite systems Z is given by 

Z : ~ A(/(1 -- A~'), ~ > /3J (73) 
i ~ l  

From the original form of Z(a) as given by (11) it is easily seen that it is 
infinite for c~ < fiJ. Thus we can conclude that % >~/3J and we can limit 
our investigation to the case when c~ > fiJ. This is precisely the regime where 
the transfer matrix method works. 

Since AI' is a function of a and/3, we determine s0 as an implicit function 
of/3 by requiring )h' to be unity 

A1'(% ,/3) = e-(~+~q)(4//3J)(vo2/a~o_l.1) ~ 1 (74) 

Here we have made use of (57) and v o is defined by 

Vo = fiJ/(% --  fiJ) (75) 

The sequence of all positive zeros of J~ _l(t) is given by a%_ m < a,,0-1.2 < "", 
where the dependence on the order of the Bessel function has been explicitly 
indicated. If we define cr by 

~r = 2(/3J)-a/z e-m"+sq)/~ (76) 
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and note that  

e-~q ~ C-~Yq e-Mq/v 

and take the square root  o f  (74), we see that  

a v o _ l ,  1 : (Te-flJq/2Voyo 

(77) 

(78) 

This relation determines v o and through (75) also ~o as an implicit function 
of/3. When av-l,1 is larger than ev exp --( f iJq/2v) ,  Aa' is smaller than unity. 
I f  there is a v o satisfying (78), then there is a corresponding % larger than fiJ. 

However, if 

a~_l. 1 > (Tve -t~Jq/2v, 0 < v < CO (79) 

then % must  be set equal to fiJ. 
F r o m  the fact that  Z is a monotone  increasing function o f  v for  a given 

temperature, it follows that  AI' is mono tone  increasing also. Thus there will 
be a unique solution v0 of  (78) or  none. Furthermore,  if there is a solution, 
then 

a~_l, 1 < ave-~Sq/2~, v - *  co (80) 

The behavior of  a~-l,~ for large orders is available in the literature. (~~ We 
have 

G-I,~ = v - -  1 + d~v 1/~ + O(v-I/3), d~ ~ 1.856 (81) 

Similarly, we note that tbr  large v 

r -= cr(v - -  �89 + O(v -~) (82) 

Compar ing  (81) and (82), we can conclude that for  ~ < 1 there is no solution 
to (78), for  ~ = 1 there is an asymptotic  solution v0 = co, and for ~ > 1 
there is a unique solution 0 < v0 < co. 

When the fold energy u is positive, as we assume here, ~ is a mono tone  
decreasing function of  fi and thus a mono tone  increasing function o f  tem- 
perature. Thus ~ is unity at a temperature Tc determined by 

2(k  Tc/J) 1/2 e -(1/2kT~)(~+sq) = 1 (83) 

Below T~, ~ is less than unity and above T~ it is larger than unity. It follows 
that 

lim (I /L)  In Q(L)  = % = I rid' T < T~ (84) 
L~ ~J(1 + ~oq, T > T~ 

where v o approaches infinity as T approaches T~ f rom above. 
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We shall now show that  T~ in fact marks a second-order phase transition 
in the polymer  molecule. This will follow f rom a study of  the energy density 
L - ~ ( E ) L  and the corresponding specific heat L - ~ ( O / ~ T ) ( E ) L  in the thermo- 
dynamic limit. Here ( E ) r  is the average energy of  a molecule o f  length L 
in the canonical ensemble, and we note that  

L - ~ ( E ) L  = --L-~(O/~/3) In Q(/3, L )  (85) 

F r o m  the results above it then follows that  

l-J, lira L - ~ ( E )  L = - -  (c~/c~/3)(%) = , _ j _ (O/~/3)(/3J/vo), L ~ o z  
T < T. (86) 
T >  Te 

Both sides of  (78) are cont inuous functions of/3 and v, so that  there will 
be no discontinuity in the energy density for  T > To, but  we must  check 
what  happens at T = To. In  the limit as T approaches T~ f rom above, 
T--+ To +, v 0 approaches infinity, and (78) can be written as 

~v o ~ v o 4- d~v 1/3 (87) 

I t  follows that  

and 

v o ~_~ d~/Z(cr - -  1) -~/2, 

vo-1 ~ d-3/2(ol - -  1) '~/2, 

T ~.~ T~4- (88) 

T ~ T~§  (89) 

(0/o/3) ~,o 1 ~ a-~,~. ,  ~/~ T ~ T o +  (90) 

F rom (82) we get 

(~/e/3)~ = - [ } / 3 - I  + �89 + Jq)]o (91) 

and it easily follows that  (O/~/3)Vo 1 vanishes at T = To where ~ = 1. Thus the 
energy density is cont inuous in the thermodynamic  limit at T = T~. 

The specific heat in the thermodynamic  limit is 

C ( T )  = lira L - ~ ( ~ / ~ T ) ( E ) L  = I - (o /~T) (~ /o~) ( /3J /v~  
L-~ ~0, 

T > T0 (92) 
T < T ~  

Both above and below T~ it is continuous,  so we can limit our study to 
T = Tc �9 Dropping  terms that  obviously vanish as T--~ T~ +, we have 

C ( T )  ~ --f lJ(~/OT)(O/O~) %1, T ~ T~4- (93) 
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Using (90) and (91) and noting that (~/~T) (O/~fi)a is finite+at T = T ~ ,  we get 

C(T) = (J/kT)d'[~/2~(kT + u 4:- Jq)(~/~T)(a --  l) ~/z, 

From the relation 

it follows that 

T ~ T~-f- (94) 

or(T) r=r~ 1 1 ~--T- = 2--~ + ~ (u ~- Jq) (95) 

e T  [~(T) - -  1]~/~ ----- (8T9-~/~ (1 + u,~o+ Jq]~/~7 - -  ~:~-  ( T -  r~)-~/~, T ~ r e +  
(96) 

and we finally obtain 

( 2 T c ) - z / 2 ( T -  T~) -1/'~, T ~'~ To+ 
(97) 

3 d~3/2j (1 + u+---Jq-] 3/2 
C(T) -= g kT~ ! 

We have found that C(T) has an inverse square root singularity at 
T = Tc.  Thus the polymer molecule goes through a second-order phase 
transition at T~. This result was obtained by Zwanzig and Lauritzen in their 
original work for the special case of vanishing fold length. Setting q equal 
to zero in (97) and transforming to the reduced variables of their paper, our 
results coincide with theirs, as they should. 

We can, of course, go on and generalize all the analytical results of  
Zwanzig and Lauritzen to the case of nonvanishing fold length. In particular, 
it is easily seen that for negative fold energy in the interval --(J/4e) --  qJ < 
u < - -q  J, ~ will be infinite for both T = 0 and T = ~ ,  having a single 
minimum below unity for some finite temperature. It follows that cr will 
intersect unity at two temperatures and there will be two phase transitions. 
Tl~e folded mode will be stable for both high and low temperatures, while 
the extended mode associated with a < 1 will be stable over some inter- 
mediate range of temperatures. When u is less than - - ( J / 4 e ) -  qJ the 
minimum value of cr will be above unity and the folded mode will be stable 
for all temperatures. 

Despite their obvious power, both the solution presented above and that 
of Zwanzig and Lauritzen are rather limited in scope. In calculating 
l imL~ L -1 In Q(L), we suppress much of the more detailed behavior of the 
partition function in the thermodynamic limit. Thus the above solution will 
not allow us to discuss the probability density for the length of a segment 
or the correlations among the segments. For  example, we note that the 
probability density for the length of a segment indexed by 1 is 

Pro(x1) = Q(L, xO/Q(L) (98) 
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Here Q(L, xl) is ~the partition function of a molecule with the length of  
segment 1 fixed at Xx �9 It is not hard to verify that 

lim L -1 In Q(L, xl) = lim L -1 In Q(L) = y~ (99) 
L-~:o L-+ce 

so that 

Q(L) = Qo(L)yl L, Q(L, xa) = Qo(L, xl)yz r (100) 

It follows that Pm(x  0 depends precisely on those factors Qo(L) and Qo(L, xO 
which are not determined by the above solution in the thermodynamic limit. 

5. C A L C U L A T I O N S  I N  TI-IE G R A N D  ENSEMBLE 

5.1. Val idity of the Grand Ensemble 

Despite its apparent mathematical advantages, the grand ensemble has 
only rarely been used to represent the properties of one-dimensional systems 
such as the polymer model discussed here. The reason for this neglect may 
perhaps be found in the facts that (a) the model lacks an external parameter 
such as volume describing the physical size of the system, and (b) the fluctua- 
tions in the size of the system are large in the grand ensemble. The lack of any 
extensive parameters in the grand ensemble suggests a close relation to the 
generalized ensembles introduced by Guggenheim (5,11) and known to require 
some care in their use. Furthermore, there is the question of how to define 
the thermodynamic limit. The latter fact (b) indicates that the canonical and 
grand ensembles are not equivalent in all respects. The canonical ensemble 
being commonly accepted, one then would need to explicitly justify the use 
of the grand ensemble. 

In an article on the helix-coil transition in DNA Lifson and Zimm (4~ 
made use of the grand ensemble to calculate the fraction of bonded pairs in 
the polymer. While noting the mathematical simplicity achieved in this 
ensemble, they took a negative view of its validity. Lifson (9) subsequently 
used the grand ensemble purely as a mathematical artifice in his method of 
calculating the free energy density in the thermodynamic limit discussed in the 
preceding section. 

However, we have already pointed out that the thermodynamic limit of 
the free energy density does not contain the desired information about the 
probability density for the length of a given segment, correlations among the 
segments, and end effects in the polymer chain. In order to obtain such 
information, we shall have to make more extensive use of the grand ensemble. 
We turn now to examine the validity of the grand ensemble and to provide 
justification for the use we shall make of it. 

Without entering into a discussion of the philosophy underlying the 
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currently popular choices of statistical ensembles, let us note that the canonical 
ensemble can be obtained on the basis of a minimum information principle.~12) 
TJhat is, if  we specify that all of the polymer molecules in our ensemble 
should have a fixed length L and that the average energy should take on the 
value (E) ,  then the canonical ensemble minimizes the total information. 
Similarly, if we let energy and length vary but demand that the averages 
( E )  and ( L )  take on given values, then the grand ensemble as defined in 
Section 23 minimizes the information. Although a theoretician is free to study 
ekher one of these two ensembles, it should be noted that there is no reason 
to believe that his results would be independent of his choice of ensemble. 
We take the point of view that the canonical ensemble is the more relevant 
here for obvious reasons. It is predominant in studies of a similar nature and 
it was used in the original studies of the ZL model. In fact the ZL model 
appears to be restricted to describe properties of polymer chains of fixed 
length since it does not consider any mechanism by which a molecule could 
alter its total length. 

Thus we shall in the following seek to obtain the properties of the ZL 
model in the canonical ensemble, allowing the use of  the grand ensemble 
only if we can explicitly show that the results in the two ensembles must be the 
same. In view of the differences between the ensembles already noted, it may 
seem unlikely that we can make any further use of the grand ensemble. 
However,  we shall limit our attention here to properties of the system in the 
thermodynamic limit. We have already noted that the commonly accepted 
definition of a phase transition is believed to make it a property of infinite 
systems only. Any physical system will, of course, be finite, but the idea is 
that we are really only interested in properties which become independent of 
system size, or dependent on size in some predictable way, in the thermo- 
dynamic limit. One then assumes that the physical system studied is large 
enough that its behavior cannot be distinguished from that of an infinite 
system. If this is the case, then we would expect the difference between the 
canonical and grand ensembles to be small even if the dispersion in system 
size in the latter ensemble is large. In fact, we shall now go on to state and 
prove a theorem of central importance to this work which shows that for most 
practical purposes the difference between the ensembles will vanish in the 
thermodynamic limit. 

T h e o r e m .  Let f be a property of the polymer molecule such that its 
canonical average is bounded and convergent in the thermodynamic limit 
for a given temperature, 

l(f~c,z. ! < fM < ~ ,  0 < L < ov (101) 

lira ( f~c ,L  = ( f ) c , ~  (102) 
Z ~  
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and let the thermodynamic limit in the grand ensemble exist as defined in (16); 
then the thermodynamic limit of the grand average must exist and be identical 
with the corresponding canonical average, 

lim ( f ) ~ , ~  = ( f)~,~o = ( f ) c , ~  (103) 

Proof, Note first the following relation between the grand and the 
canonical averages: 

f0 ( f ) a , ~  dL  Q(L) -mY -1 = e ( f ) c , L Z  (o 0 

jo = dL/ z (L;  cO( f )c .  L (104) 

Here ~(L; c~) is a probability density for the total length L of the molecule. 
It follows from (16) that/x(L; ~) satisfies 

~o L~ l O' Lo < ~ 1 7 6  lim dL/x(L;  ~) = (105) 
~ o +  l ,  L o ~ oo 

But then we have that for each e > 0 there exists an L(E) such that 

[ ( f )c ,L  --  ( f )c , ,~  ] < ~/2, L >~ L(E) (106) 

and an ~'(~, L(E)) such that 

fo Ll~ /~(L; ~) < E/4fM, c% < c~ L(e)) (107) dL % (Xt(E~ 

and it follows immediately that 

[( f )a,~ - -  ( f)c,o~ ] < e, ao < ~ < ~'(e, L(e)) (108) 

Since e can be chosen arbitrarily small, we conclude that 

lim ( f ) a , ~  = (f)a,~o = ( f ) c , ~  ( 1 0 9 )  

In the present model the size of the system is measured by the continuous 
parameter L. It should be clear, however, that the above theorem will hold 
also when the size of the system is measured by a discrete variable, and there- 
fore it applies to a wide range of models. The theorem is quite strong and 
inclusive, the only limitations being that the thermodynamic limit in the 
grand ensemble must exist as defined in (16) and the canonical average must 
be bounded and have a thermodynamic limit. It appears that these conditions 
will be satisfied in all but rather exceptional circumstances. 

The above theorem establishes a near equivalence between the canonical 
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and grand ensembles in the thermodynamic limit which we shall rely upon 
to justify the following investigation of the properties of the ZL model. 

5.2. Probability Density for Segment Length and Correlations 
Among Segments 

In order to obtain deeper insight into the properties of the symmetrized 
ZL model of polymer chain folding, we now consider the probability density 
for the length of a particular segment and the joint probability density for the 
lengths of two or more segments separated by given numbers of folds. The 
calculations will be performed in the grand ensemble using the spectral 
resolution for the grand partition function obtained in Section 3 by the 
transfer matrix method. One easily verifies that the thermodynamic limit 
exists as defined in (16) and the probability densities correspond to canonical 
averages bounded by unity. Thus we can conclude from our equivalence 
theorem that if the thermodynamic limit of these probability densities exists 
in the canonical ensemble, then it must coincide with the corresponding result 
that we shall obtain here in the grand ensemble. Further results concerning 
the behavior of the model will be reported without proof in the concluding 
section. Here we shall merely note that below the transition temperature when 
the polymer molecule is in its extended mode the average segment length 
is infinite in the thermodynamic limit and we can expect the probability 
density for segment length to vanish at finite lengths. Thus our investigation 
will1 be limited to the folded mode of the polymer above To �9 

Let us first recall that all the molecules in our ensemble form closed rings 
in a mathematical sense, with the number of segments varying from one to 
infinity. If  we consider the subensemble of rings of a given number of seg- 
ments, then there is complete symmetry among the segments. Enumerating 
the', segments in each ring by 1, 2 ..... N, we then define Pro(x) to be the 
probability density for the length of segment 1 in the whole ensemble. It is 
not hard to see that Pro(x) will be given by 

P ( 1 ) ( x )  = Z(x) /Z  = Z -1 ~ e-(Bu+~q)N<x I MN I x)  (110) 
N ~ I  

Note now that any integral power of the transfer matrix may be written 

MU ---- ~ [ r162 [ AN, N = 1, 2 .... (111) 
i ~ 1  

Substituting this form into (110), we get 

Pro(x) = Z -1 ~ {r 2 Ai'/(l - -hi ' )  (112) 
i = l  
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In the thermodynamic limit and above T~ (112) simplifies to 

P~I)(x) = Cz2(x) = (~o -- ~J)  JZ2(al) e-(~~ 

• J~(aae-(~~ T > T~ (113) 

Below T~, P~ol)(x) vanishes for finite x, as expected. 
Integrating P(1)(x), we find 

fj dx Pro(x) = Z -~ dx r  Ai'/(1 -- A() = 1 (114) 
i=l 

Thus the proper normafization of Pro(x) is a consequence of the normaliza- 
tion of the eigenfunctions {r 

In a similar manner we can define a two-segment joint probability 
density P(~)(xl, n l ,  x2) describing the likelihood of finding segment 1 having 
length xl and a segment nz + 1 in the same molecule having length x2. 
We readily obtain the following expression for p(2): 

P(2)(x1 , 171, X2) = Z -1  ~ e--N(Bu+c'q)<x1 ] M'~al x2}(x~l MN-nli  Xl} 
N=nl+l 

= Z - I  i xl  i(x2 i' ~ 

x ~ ~b~(xx) r --  h() (115) 
i=l 

In the thermodynamic limit and above T~ we get 

P~)(xl, ,,1, x~) = r r ~ r r "1 

T > To (ll6) 

It should now be clear how to generate these probability densities for 
three and more segments. We obtain 

P(3~(X1, t/1, X2, //2, X3) = Z-1 (ai') nl ~i(xl)  ~i(x2 

• (Z/) ~ r r 

• ~ r r - a j )  (117) 
k=l 
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and so on for higher orders. It  is again easy to see that these densities will be 
properly normalized in the thermodynamic limit above T~ where all molecules 
have the needed number of  segments. Note that if we integrate (117) over 
x l ,  x.~, and xa,  we get the probability of  finding a molecule with at least 
na + n2 + 1 segments. 

We now turn to illustrate the usefulness of  the above probability densities 
in two simple applications. Let us first recall that the interest in the ZL model 
was originally based on its representation of the crystallization of long 
polymer molecules into a folded mode of essentially uniform segment lengths 
or crystal thickness. The quantity p = L/N carries information about the 
average length of  a segment, but it does not answer the question whether 
there is a well-defined local crystal thickness. This question is better answered 
by P~oZ)(x). Let us therefore briefly examine the qualitative behavior of  this 
function in the thermodynamic limit and above T~. Note first that P~l~(x) 
can be written 

_ _  _ _  j - 2  - 2  P~I)(x) (c% fi ) av-L~j~ (a~-z.z) y2~2(y) ,  T > T~ (118) 

where y is equal to av-m exp[--�89 - -  fiJ)x]. When x varies between zero 
and infinity, y varies between a~_za and zero. Note also that the smallest zero 
of if'u, a~a, is larger than a~-~.l and for v > 0, j~(0) vanishes and ~ ( t )  
has a single maximum between zero and a~a 

I f  the folded polymer molecule is to have a well-defined local thickness, 
it appears reasonable to demand that at least P(o~)(x) have a maximum, if not 
a 'very sharp one. To see if  it does, we need to study the zeros of  (8/Sx) 
P~oZ)(:O or equivalently of  (8/8x) [y2 r in the interval 0 < y < a~_ m . 
Thus we seek the solutions of  

(a/ax)[y2J.2(y)] = [2yJ2(y) -? 2y2j~(y)J~'(y)] 

• [--�89 - -  flJ)y] = 0 (119) 

or equivalently 

y2flr(y)[j~(y) + ~r = 0 (120) 

The factor y2j~(y) is larger than zero within the interesting range 
0 < y < av_l,,, so we consider the equation 

A(y) + y ~ ' ( y )  = 0 021) 

Using the recurrence relation 

Jv'(Y) = J . - I (Y)  --  (v/y) f~(y) (122) 

(121) can be written 

yJ~_~(y) -- (v -- 1 ) J . ( y )  = 0 (123) 
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For  v < 1 it is clear that  the left-hand side of  (123) is always larger 
than zero in the interesting range o fy .  For  v > 1, however, there is a solution. 
This is clear since, for  y = a,_,.~, y J . _ l ( y )  vanishes and the left-hand side is 
negative, while for small y we have (7) 

A ( y )  ~-- (~y)~[F(~ + 1)1% 

--  (v --  1) J~(y)  ~_ y~2-"+*[F(v)] -* (1 yJ~-x(y)  \ 

y - + 0  
(124) 

1 1_} \ > 0, y - ~ 0  P 

2 v / 
(t25) 

It  follows that  for  v 0 > 1, ( ~ / a x ) P o r e ( x )  starts out  positive for small x, 
changes sign at some finite value, and is negative for large x. Thus UoZ)(x) 

must  have a max imum for  some length Xrnax , 0 < Xma x < oo. For  v 0 < 1, 
on the other hand, P~oZ)(x) takes on its max imum value % --  f i J  at zero length 
and decreases in a mono tone  fashion as x increases. 

The temperature dividing the two regions v 0 > 1 and v 0 < 1 can be found 
by not ing that  v 0 = 1 means that  % = 2rid. The condit ion that  2t,' be equal 
to unity then leads to 

% 1  = 2 ( f i J )  -1/~ e-B(u+2sq)/~ (126) 

The r ight-hand side is a continuous mono tone  decreasing function of  fi 
varying between zero and infinity. Thus (126) determines a unique fi0 or  
temperature To above which P~ZJ(x) ceases to have a maximum and the 
concept  o f  a local crystal thickness in the model  breaks down. 

Finally, we shall consider the decay of  correlation between two segments 
as the number  o f  folds between them goes to infinity. We define a segment 
pair  correlation funct ion by 

g ( x l  , nz , x2) - -  P(2) (x l  , n ,  , x2 ) [Pm(xz )p (1 ) ( x2 ) ]  -* - -  1 (127) 

In  the thermodynamic  limit and above Tc it becomes 

g o ( X , ,  n ,  , x2) = 2~ , nl ( i ) ~i(X1) ~Ji(X2) [~1(Xl) t~*(X2)] -1 1 (128) 

Not ing  that  A s' > As' > ha' > "", etc., we find that  in the limit of  large 
separation n, we have 

go(x1 ,  n ,  , x2) ~ F ( x ,  , x2) exp{--[ln(1/k2')]n,}, ,72 --* oo (129) 

F(x ,  , x~) = r162 r162 ] -~ (130) 

Thus we see that  the correlation drops off exponentially at a rate 
determined by ln(1/Ae') as the number  o f  folds in between the chosen segments 
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approaches infinity. In order to examine the decay of the correlation in the 
critical region T ~ Tc ,  we recall that as T approaches T~, v 0 goes to infinity. 
Using the following relations for zeros of Bessel functions of large order (1~ 

a~,l ~'~ v + 1.856vl/a § O(v-1/a) (131) 

a~,2 '-~ v + 3.244v~/3 + O(v-1/3) (132) 

we then find 
lim In(l/A2' ) = l im ln(kl'/A2' ) = 0 

T ' ~  T e + T - ~  T c + ' 
(133) 

We conclude that the decay rate of the correlation at large separation 
vanishes as we approach the phase transition. This result supports the 
commonly accepted rule that critical correlations have infinite range. Further- 
more, we note that the infinite range is due to the onset of asymptotic 
degeneracy in the largest eigenvalues as the temperature approaches To. 
Such behavior was first predicted by Ashkin and Lamb. (13) 

6. S U M M A R Y  A N D  D I S C U S S I O N  

The very strong influence of a few exactly soluble models, notably the 
]sing model in one and two dimensions, on the theory of phase transitions is 
well known. There is, of  course, a limitation on the generalizability of  the 
results obtained within any particular model. It becomes important to seek 
a wider range of soluble models in order to reduce excessive influence of 
model-specific behavior on the general theory. This is the basic reason for 
our interest in the continuous Zwanzig-Lauritzen model of polymer crystal- 
lization by chain folding. It does contain physically interesting interactions 
quite distinct from those of the lsing model while allowing the study of a 
second-order phase transition and other thermodynamic properties by ana- 
lytical methods. The presence and form of the phase transition were 
established already by Zwanzig and Lauritzen in their original article, but 
their solution is rather limited in scope and not easily extended. We have 
therefore sought a new method of solution both simpler and more informative 
than the original one. 

It was observed that the loose ends of the original model led to an 
asymmetry which complicated the mathematical analysis. Thus we introduced 
a symmetrized version of the model by letting the two end segments interact 
as if the molecule formed a closed ring. All of the calculations presented in the 
preceding sections concern this symmetrized model. In order to obtain a 
measure of the end effects of the molecule, calculations were carried out by the 
same methods for the original model also. The mathematics is substantially 
overlapping between the two models and somewhat more complicated in the 

Szzlol3-5 
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original loose-end version. In order not to overburden this paper with 
mathematical detail, we shall state the most interesting results without proof. 

Searching for both simplicity and power, we decided to make use of a 
grand ensemble, eliminating the troublesome length restriction in the canoni- 
cal ensemble and the transfer matrix method well known from its successes 
in the work on Ising models. We quickly became aware of the unusual 
properties of the grand ensemble which has kept it from use in earlier work 
on similar models. It has no extensive parameters, there is substantial 
dispersion in system size even for large systems, and it obviously is not 
equivalent to the canonical ensemble in the customary way. Nevertheless, the 
grand ensemble can be derived from a principle of minimum information 
and, more importantly, we found that in the thermodynamic limit the canon- 
ical and grand averages of practically all interesting properties must coincide 
if the former averages exist. 

The application of the transfer matrix method contains some unusual 
features also. In the one-dimensional Ising model a single particle is assigned 
to each site in a linear lattice and the states available to each site are discrete. 
Here, using the grand ensemble, we found it convenient to assign a varying 
length of the molecule to each site, and the set of states available to each site 
became continuous. Thus the transfer matrix became a kernel and the eigen- 
value equation a homogeneous Fredholm integral equation of the second 
kind. However, it was still possible to carry out the program as established 
for finite-order transfer matrices. All the nonvanishing eigenvalues and 
corresponding eigenfunctions were found and after verifying that the kernel 
was symmetric and square-integrable we could employ the Hilbert-Schmidt 
theorem to see that the grand partition function was related to the eigenvalue 
spectrum in the manner suggested by the discrete examples. 

The results made available by these new methods are plentiful and 
certainly not exhausted in this study. We easily reproduced the results 
concerning the phase transition obtained already in the original work on the 
model and slightly extended them by allowing the length of a fold to be 
greater than zero. The specific heat density diverges as the inverse square root 
of T -  Tc as T approaches Tc from above. The polymer molecule is in a 
folded mode above T~ characterized by a finite average segment length. As 
T decreases, the segments grow longer, to become infinite at T = Tc and 
below T~ in the extended mode. Analytic forms were obtained for the 
probability density of the length of a segment and the joint probability 
densities describing correlations among two or more segments. Examining 
the one-segment probability density, we concluded that the concept of a 
local crystal thickness in the model breaks down at higher temperatures in 
the sense that the density no longer has a maximum but decreases in a 
monotone fashion. We also looked at the decay rate of critical correlations 
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among two segments as a function of the number of segments separating 
them and we found, in accord with previous predictions, that the range of  
the critical correlations became infinite due to the onset of  degeneracy 
among the two largest eigenvalues of  the transfer matrix. 

The above results were obtained in the thermodynamic limit for the 
symmetrized version of the ZL model. We subsequently extended the calcula- 
tions to the original model in order to check on the end effects. There were 
no significant differences for long molecules in the folded mode above T~. 
Below T~, however, the loose ends caused a discontinuity in both the grand 
partition function and the average molecular lengths, which meant that the 
thermodynamic limit in the grand ensemble did not exist as defined. 

Reviewing our results, we note that the ZL model provides an interesting 
ilhJstration of some basic ideas of  the general theory of phase transitions. 
First we recall the rule that one-dimensional systems do not have phase 
transitions unless the range of interaction is infinite. The ZL model can be 
thought of as being one-dimensional and it does have a phase transition. 
The interaction range is directly related to segment length. Noting that the 
average segment length increases as T decreases to become infinite at T = T~, 
we see that the effective range of interaction becomes infinite at the phase 
transition. 

It  has been proposed I1'~ that the mathematical mechanism of a phase 
transition in the transfer matrix method is the onset of  degeneracy in the 
largest eigenvalue. This is indeed the case in the present calculation on the 
ZL  model. We found in a calculation not reported here that the whole 
eigenvalue spectrum collapses into a point as T approaches T~ from above. 
We have already noted that the critical correlations are of infinite range, as 
expected. 

In this connection we should remark that a set of  critical indices of  the 
ZL model has recently been reported/aS) They were found to be different from 
the critical indices of  other known transitions, but they did satisfy the familiar 
relations between critical exponents as exact identities. 

In the light of our new solution we feel the ZL model must rank among 
the most soluble of  the nontrivial models displaying a phase transition. As 
such, it should have great pedagogical value. The relevance of the model to the 
behavior of  long polymer molecules is less clear, but the model may perhaps 
be dressed up to become more realistic without losing at1 of  the nice mathe- 
matical properties that made the present study possible. 
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